Data Encoding

Contents

Digital data, Digital encoding Digital data, Analog encoding ASK, FSK, PSK, QPSK, QAM Analog data, Digital signals PCM Analog data, Analog signals AM, FM, PM

Digital Data, Digital Encoding

```
Nonreturn to Zero-level (NRZ-L)
Nonreturn to Zero Inverted: FDDI, 100Base-FX
Bipolar-AMI: T-1, T-3
Pseudoternary
Manchester: IEEE802.3 10Base Ethernet
Differential Manchester: IEEE 802.5 token ring
B8ZS: T-1, T-3
HDB3
```

Digital Data, Digital Encoding

Digital Data, Analog Encoding

Digital Modulation

Bits \rightarrow Symbols \rightarrow Pulses \rightarrow Put into Carrier

Carrier signal: digital information is carried by means of a **modem** that modulates one of the three characteristics of the carrier

Amplitude-shift keying (ASK)

Frequency-shift keying (FSK)

Phase-shift keying (PSK)

Digital Modulation

Mapping data bits to signal elements

bits \rightarrow symbols \rightarrow pulses

ASK/FSK/PSK

Figure 5.7 Modulation of Analog Signals for Digital Data

ASK

ASK is susceptible to error and is a rather inefficient modulation technique

- On voice-grade lines, it is typically used up to 1200 bps
- Commonly used to transmit digital data over optical fiber

FSK

FSK is less susceptible to error than is ASKOn voice-grade line, it is typically used up to 1200 bps

Commonly used for high-frequency (3-30 MHz)

Figure 5.8 Full-Duplex FSK Transmission on a Voice-Grade Line

1070 1270

2025 2225

Frequency (Hz)

PSK (180° phase shift) is more noise-resistant and efficient than FSK

Absolute phase

Differential PSK (DPSK)

Variation of PSK

- Absolute phase reference is not necessary for demodulation of the data
- *Differential*: referenced to the phase of the carrier during the previously encoded interval

DPSK

Figure 5.10 Differential Phase Shift Keying (DPSK)

DPSK

Rubust encoding without burst of phase shift PSK

DPSK

PSK/QPSK

PSK (180° phase shift) is more noise-resistant and efficient than FSK

Differential PSK: referenced to the phase of the carrier during the previously encoded interval

QPSK (90° phase shift) Each symbol represents two bits $D = R/b = R/log_2L$

QPSK

QPSK (90° phase shift)

QPSK Modulation

Figure 5.11 QPSK and OQPSK Modulators

QPSK Modulation

Figure 5.12 Example of QPSK and OQPSK Waveforms

QAM

Combination of the techniques: PSK + ASK

On voice-grade line, rates up to 9600 bps (12 phases, three amplitudes)

Symbol rate (Baud rate): $D = R/b = R/log_2L$

QAM is used in ADSL and some wireless standards 16QAM:

 $2bits/I \ge 2bits/Q = 4$ levels ≥ 4 levels ≥ 16 states 64QAM:

256QAM:

QAM

Phasor diagram for the Bell 209A modem depicting 9600bps QAM

QAM: $s(t) = d_1(t)\cos 2\pi f_c t + d_2(t)\sin 2\pi f_c t$

Figure 5.14 QAM Modulator

Analog Data, Digital Signals

Pulse-code modulation (PCM): the best known technique for voice digitization used in codecPCM is based on sampling theorem

Nyquist Sampling Theorem

 $f_s > 2BW$

 2×4 KHz = 8000 samples/sec = 8000 PAM pulses

Each sample is approximated by being quantized into one of 2⁸ different levels

Quantizing

Figure 3.8. Quantization of analog samples.

Analog Data, Analog Signals

- Analog information can be converted directly into an analog signal that occupies the same bandwidth: baseband signal
- Voice signal is directly transmitted on a voice-grade telephone line (local loop)
- It is possible to use an analog signal to modulate a carrier to produce a new analog signal that conveys the same information but occupies a different frequency band: Modulation

Analog Data, Analog Signals

Why?

- A higher frequency may be needed for effective transmission
- Analog-to-analog modulation permits frequencydivision multiplexing
- Analog-to-analog modulation Amplitude modulation (AM) Frequency modulation (FM)
 - Phase modulation (PM)

Summary

Digital data, Digital encoding: Bipolar-AMI, Manchester, ... **Digital data, Analog encoding** ASK, FSK, PSK, QPSK, QAM More bits in one symbol increases data rate Analog data, Digital signals **PCM** for voice digitization Analog data, Analog signals AM, FM, PM